Benchmarks
For benchmark our project we used the dataset provided by Marek Gagolewski. Specificallyh we are using wut dataset. Below you can see the table with our metrics of rand index and accuracy of our algorithms: kmeans and kmeans++ which was benchmarked on wut dataset. Also, we are providing visualization in order to give insights what data we used.
Comparison table
Test Case | Kmeans Rand Index | Kmeans Accuracy | Kmeans++ Rand Index | Kmeans++ Accuracy | Bkmeans Rand Index | Bkmeans Accuracy |
---|---|---|---|---|---|---|
circles | 1.00 | 1.00 | 1.00 | 1.00 | 1.0 | 1.0 |
cross | 0.5905 | 0.5967 | 0.5905 | 0.5967 | 0.7362 | 0.7167 |
graph | 0.8835 | 0.2373 | 0.8852 | 0.6133 | 0.8687 | 0.3147 |
isolation | 0.5564 | 0.3474 | 0.5557 | 0.3444 | 0.5543 | 0.3489 |
labirynth | 0.7526 | 0.4511 | 0.7526 | 0.4511 | 0.7839 | 0.2350 |
mk1 | 1.00 | 1.00 | 1.00 | 1.00 | 1.0 | 1.0 |
mk2 | 0.5010 | 0.5467 | 0.5010 | 0.5467 | 0.5010 | 0.5467 |
mk3 | 0.9740 | 0.9778 | 0.9740 | 0.9778 | 0.9740 | 0.9778 |
mk4 | 0.5682 | 0.2311 | 0.5766 | 0.2400 | 0.6224 | 0.5111 |
olympic | 0.7122 | 0.2907 | 0.7306 | 0.2707 | 0.7110 | 0.2840 |
smile | 0.8263 | 0.4267 | 0.8379 | 0.5267 | 0.8335 | 0.5733 |
stripes | 0.4998 | 0.5160 | 0.4998 | 0.5160 | 0.4998 | 0.5160 |
trajectories | 1.00 | 1.00 | 1.00 | 1.00 | 1.0 | 1.0 |
trapped_lovers | 0.5973 | 0.5840 | 0.5955 | 0.5813 | 0.5833 | 0.4533 |
twosplashes | 0.6186 | 0.7500 | 0.6186 | 0.7500 | 0.6186 | 0.7500 |
windows | 0.5745 | 0.3333 | 0.5677 | 0.3535 | 0.5820 | 0.4855 |
x1 | 1.00 | 1.00 | 1.00 | 1.00 | 1.0 | 1.0 |
x2 | 0.8301 | 0.8889 | 0.6078 | 0.6667 | 0.6078 | 0.6667 |
x3 | 0.9259 | 0.9286 | 0.9339 | 0.6429 | 0.9339 | 0.6429 |
z1 | 0.6256 | 0.4828 | 0.6256 | 0.4828 | 0.6650 | 0.5862 |
z2 | 0.7803 | 0.3333 | 0.7803 | 0.3333 | 0.7772 | 0.2963 |
z3 | 1.00 | 1.00 | 1.00 | 1.00 | 1.0 | 1.0 |
Visualization K-means

Figure 1: Clustering Circles with K-means

Figure 2: Mk1 with K-means

Figure 3: Mk3 with K-means

Figure 4: Z3 with K-means

Figure 5: Trajectories with K-means